Identifiability of Non-Gaussian Structural VAR Models for Subsampled and Mixed Frequency Time Series

نویسندگان

  • Alex Tank
  • Emily Fox
  • Ali Shojaie
چکیده

Causal inference in multivariate time series is confounded by subsampling in time between the true causal scale and the observed data sampling rate. In practice, this presents challenges for inferring causal interaction between time series due to differences in sampling rates across time series and generally low sampling rates due to technological limitations. To determine instantaneous and lagged effects between time series at the true causal scale, we take a model based approach based on structural vector autoregressive (SVAR) models. We show that when the underlying noise, or shocks, to the system are non-Gaussian, both the parameters of the true model and its causal structure are identifiable from subsampled and mixed frequency data. Our work builds on the recent work of Gong et al. [1], who established the identifiability of VAR models from subsampled time series with non-Gaussian noise, but with no instantaneous interactions. Here, we generalize their work to the SVAR case to handle instantaneous interactions and, additionally, the multifrequency setting. The resulting approach provides a complete picture of identifiability in non-Gaussian SVAR models under arbitrary mixed frequency subsampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Comparison of Seismic Input Energy Based on the Characteristics of Structural Hysteretic Behavior

The variation of earthquake input energy with characteristics of various structural systems, particularly in hysteretic states, has not been studied to such extent that creates enough con-fidence for proposing energy-based design criteria. In this paper, at first, based on a somehow new insight into the concept of earthquake input energy, two concepts of ‘Received Energy’ (ERec) and ‘Returned E...

متن کامل

Discovering Temporal Causal Relations from Subsampled Data

Granger causal analysis has been an important tool for causal analysis for time series in various fields, including neuroscience and economics, and recently it has been extended to include instantaneous effects between the time series to explain the contemporaneous dependence in the residuals. In this paper, we assume that the time series at the true causal frequency follow the vector autoregre...

متن کامل

Causal Inference on Time Series using Restricted Structural Equation Models

Causal inference uses observational data to infer the causal structure of the data generating system. We study a class of restricted Structural Equation Models for time series that we call Time Series Models with Independent Noise (TiMINo). These models require independent residual time series, whereas traditional methods like Granger causality exploit the variance of residuals. This work conta...

متن کامل

Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions

This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016